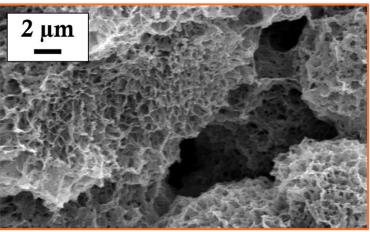
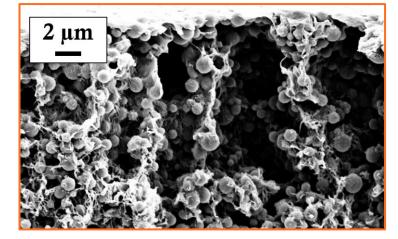
Particle Growth in Mixed Matrix Polymer Membranes:

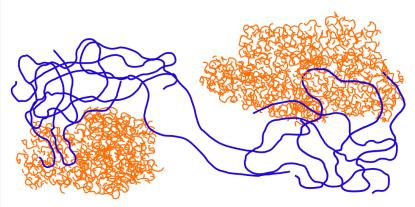
Using Ultra-Small Angle Neutron Scattering to Observe Transient Phenomena in Casting Solutions

Rachel R. Ford, Joey D. Kim, Kunlun Hong, Mamadou S. Diallo, and Julia A. Kornfield*

 Korea-US Nano Forum September 27, 2016




CENTER FOR NANOPHASE MATERIALS SCIENCES


Mixed matrix membranes with *in-situ* generated polymeric particles Kotte, et al. *Environ. Sci. Technol.* **2015**, *49*, (16) 9431–9442. Hwang, et al. *Water Res.* **2015**, *73*, 181–192.

Pure PVDF membrane

PEI/PVDF mixed matrix membrane

 $\begin{array}{cccc} & \mathbf{NH}_2 & F & F \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{F}, \mathbf{F} & \mathbf{F} \\ \mathbf{N}, \mathbf{N}, \mathbf{N} & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ \mathbf{N}, \mathbf{N}, \mathbf{N} & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{F}, \mathbf{F} \\ (\mathbf{N}, \mathbf{N}) & \mathbf{NH}_2 & \mathbf{H} \\ (\mathbf{N}, \mathbf{N}) & \mathbf{H} \\ (\mathbf{N}, \mathbf{H} \\$

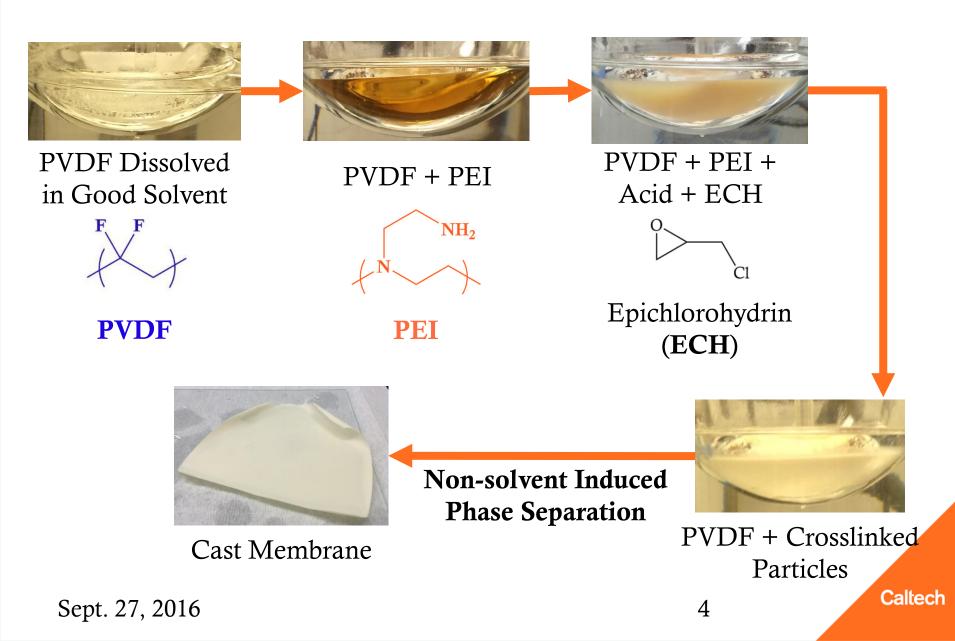
Sept. 27, 2016

2

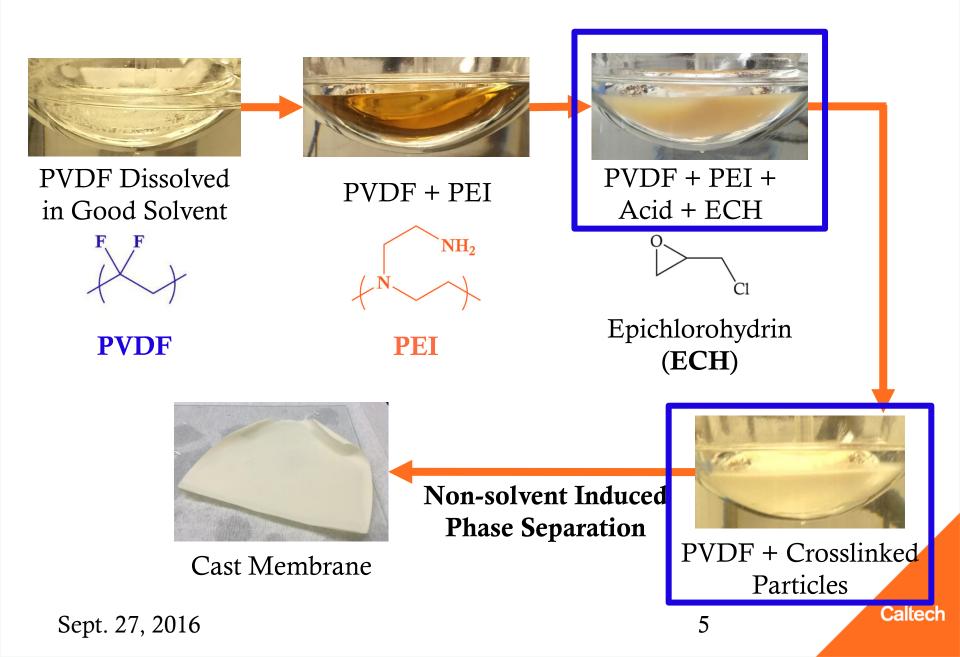
Avenues of study of mixed matrix membranes with *in-situ* generated polymeric particles

Fundamental Study of Structure Development in Mixed Matrix Membranes

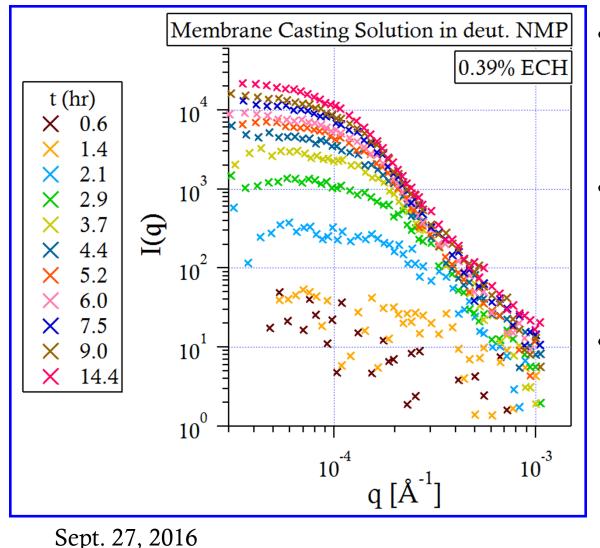
Thin Film Composite Membranes for Nanofiltration


Hydrophilic Mixed Matrix Substrate Coating Catalytic Polymer Films for Electrochemical Reduction of CO₂

Dendrimer-like particle with encapsulated Cu(0) clusters


Glassy Carbon Electrode

Sept. 27, 2016


Preparation of mixed matrix membranes

Preparation of mixed matrix membranes

The problem demanded a new methodology: Novel application of Ultra-Small Angle Neutron Scattering (USANS)

- Slowed reaction time
 by decreasing
 concentration of ECH
- Decreased acquisition
 time by an order of
 magnitude
- Novel way to study structure in membrane casting solutions

6

Looking Forward

- Isolate structural contributions of each component in the casting solution using fully deuterated amine precursors
- Explore ion-rejecting coatings for NF membranes
- Precipitate and encapsulate copper nanoparticles in dendrimer-like particles of membranes for electrochemical reduction of CO₂

Sept. 27, 2016

Acknowledgements

- Center for Nanophase Materials
 Sciences
- NIST Center for Neutron Research
- Resnick Sustainability Institute
- Kornfield Group & Prof. Diallo

CENTER FOR NANOPHASE MATERIALS SCIENCES

Caltech

Sept. 27, 2016

8